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Abstract

A computational modeling technique for fracture propagation in viscoelastic materials using cohesive elements for
the zone ahead of the crack tip is presented. The computational technique is used to study the problem of increase in

fracture energy with peel velocity in peel testing of polymers. A rate-independent phenomenological cohesive zone
model is used to model the intrinsic fracture toughness of the interface between the polymer sheets. A dimensional
analysis reveals that the macroscopic fracture energy scales with the intrinsic fracture toughness and is a function of

peel velocity, and parameters such as the thickness, bulk properties of the polymer sheets, and other cohesive zone
properties. The growth of fracture energy as a function of the peel velocity has been studied for polymer sheets
characterized by a standard linear viscoelastic solid. Viscoelastic losses in the peel arm vanish in the limits of very slow

and rapid peeling. Peak dissipation is obtained at an intermediate velocity, which is related to the characteristic
relaxation time and thickness. This behavior is interpreted in terms of the size of elastic and viscous zones near the
crack tip. It is found that the total energy dissipated is dependent upon both the intrinsic fracture toughness and the
characteristic opening displacement of the cohesive zone model. The computational framework has been used to model

experimental data on peeling of Butadiene rubbers. It is found that the usual interpretation of these data, that the
macroscopic dissipation equals the rate-independent intrinsic toughness multiplied by a factor that depends on rate of
loading, leads to a large quantitative discrepancy between theory and experiment. It is proposed that a model based on

a rate-dependent cohesive law be used to model these peel tests. # 2000 Elsevier Science Ltd. All rights reserved.

Keywords: Fracture; Cohesive zone models; Finite elements; Cohesive elements; Peel tests; Viscoelasticity; Polymers; Fracture

energy; Rubber

1. Introduction

The use of polymers in structural design requires an understanding of the conditions that lead to their
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failure by initiation and growth of cracks over time. For deformations over a range of temperatures
above the glass transition temperature, the mechanical behavior of amorphous polymers can often be
characterized using viscoelastic theories. Several researchers have contributed to the present day
knowledge of fracture initiation and propagation in viscoelastic materials. Williams (1963), Knauss
(1973), and Schapery (1975) developed theories for macroscopic cracks propagating in a linear
viscoelastic continuum. These are based on the presence of a cohesive zone near the crack tip that is a
continuum representation of material degradation and failure at a microscopic level by one of many
possible mechanisms. Such cohesive zone models were originally proposed by Dugdale (1960) and
Barenblatt (1962) for fracture in rate-insensitive materials. Williams (1963) derived the conditions for
crack initiation in a linear Voigt solid based on the assumption of an average critical strain in the
material at the crack tip. It was assumed that the stress ahead of the crack tip reaches a constant peak
value over a certain length and that the crack initiates once the strain in this region reaches a critical
value. Knauss (1973) developed a theory for constant rates of crack propagation in a linear viscoelastic
material. The stress transmitted within the cohesive zone was approximated by a rate-independent
bilinear cohesive stress-opening displacement relationship. Two possible criteria, one based on an
ultimate crack opening displacement, and another based on critical energy were proposed for crack
propagation in the macroscopic viscoelastic continuum. Schapery (1975) developed a similar theory for
transient crack propagation in a linear isotropic viscoelastic medium. No explicit assumptions about the
stress-opening displacement relationship that characterizes the cohesive zone were made. An energy
based crack propagation criterion was proposed, and the theory is applicable to both constant and
varying crack propagation velocities of the crack tip.

It has been recognized that, depending on the physical nature of the fracture process, the stress that
the crack tip-speci®c cohesive zone carries may be rate-dependent (Hui et al., 1992; Knauss, 1993).
However, in most early works, a rate-independent cohesive zone representing the intrinsic work of
fracture has been used satisfactorily to model experimental data. Moreover, it has been argued that the
intrinsic fracture toughness of rubbers is rate-independent and on the order of 20±50 J/m2 (Lake and
Thomas, 1967), and that the di�erence between measured and intrinsic fracture toughness can be
attributed to viscoelastic losses in the bulk (Kinloch, 1987; Gent, 1996).

In recent studies on viscoelastic fracture Knauss and Losi (1993), instead of specifying an explicit
function for the cohesive stresses, use a nonlinear viscoelastic material model for the cohesive zone. In
the limit of small strains the nonlinear viscoelastic model is identical to the linear viscoelastic model
used to describe the bulk. De Gennes (1996, 1997) presented a theoretical picture of various zones near
a crack tip propagating in a weakly cross-linked viscoelastic solid. The concept of a `viscoelastic
trumpet', which represents the various zones around a propagating crack tip, was introduced to explain
the scaling and growth in the fracture energy with crack velocity. Fig. 1 depicts the viscoelastic trumpet
comprising of three distinct zones along with the cohesive zone at the propagating crack tip. In an
in®nite specimen, these three zones are: (1) the unrelaxed zone characterized by the small time modulus
of the material, G0; (2) a surrounding viscous dissipation zone which contributes to the bulk dissipation
in the material; and (3) an exterior zone that is fully relaxed characterized by the long time modulus,
G1. For a crack propagating in an in®nite viscoelastic medium it is shown that the macroscopic fracture
energy scales with the intrinsic cohesive energy, consistent with most previous theoretical and
experimental work. The size of the viscous dissipation zone, and thus the volume of the material in the
viscous dissipation zone, grows with increasing crack velocity. For a crack propagating in a ®nite
viscoelastic specimen the size of the viscous dissipation zone is limited by the specimen thickness. Then,
fracture energy increases with increasing velocity, attains a peak, and decreases for further increase in
velocity. Hui et al. (1992) studied crack propagation along the interface of two semi-in®nite polymer
sheets. Using small scale yielding assumptions, and a linear solid viscoelastic model for the bulk, they
found that the macroscopic fracture toughness scales with the intrinsic fracture toughness of the
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interface. It grows without bound with increasing crack propagation velocity. Xu et al. (1992) have
extended this analysis to study a steadily moving crack along the interface between two ®nite-size
polymer specimens. They ®nd that with increasing velocity the macroscopic fracture energy grows to a
peak, and subsequently falls back to the intrinsic fracture energy of the interface as predicted by De
Gennes (1996, 1997).

The inclusion of a cohesive zone introduces a length scale even for crack propagation in an in®nite
specimen. As a consequence, it is not necessary that all three of de Gennes' regions exist; at slow rates
the glassy and viscous regions may be smaller than the cohesive zone. This fact leads to a seeming
discrepancy between the cohesive zone and energy ¯ux approach to fracture of viscoelastic materials, as
pointed out by Rice (1978). As is well known (Rice, 1978; Lawn, 1993), the cohesive zone and critical
energy release rate models for crack propagation are fully consistent for elastic±brittle materials if the
size of the cohesive zone, L, is much smaller than the crack length, a, or any other characteristic
dimension in the problem. However, Rice (1978) has shown that there is an inconsistency between the
sharp, featureless view of the crack tip and one based on a cohesive zone of ®nite dimensions, in the
limit of small crack velocities. This is when the glassy and viscous regions become smaller than the
cohesive zone size. Hence, a successful continuum model for crack growth in viscoelastic materials
requires some coupling of the fracture process occurring in the ®nite size cohesive zone and the bulk
deformation.

In this paper we develop a computational framework using cohesive zone models for fracture in
viscoelastic materials. We use it to study a model problem of peel testing of polymer adhesives. A study
of peel testing is important in its own right as it is a well-established experimental test used to
characterize the strength of adhesives. Macroscopic fracture energy in a peel test, measured by the peel
force, combines the intrinsic interfacial fracture energy and viscous dissipation in the peel arm. Several
investigators (Gent and Petrich, 1969; Andrews and Kinloch, 1973; Ahagon and Gent, 1975; Gent and
Hamed, 1977; Chang and Gent, 1981; Gent and Lai, 1994; Gent, 1996) have studied experimentally the
e�ect of peeling rate on the measured peel strength of viscoelastic polymer adhesives. For a ®xed failure
mode, peel energy typically increases with rate of peeling, u, and can vary by more than three orders of

Fig. 1. Schematic drawing depicting di�erent zones around a crack propagating with velocity, V, in a viscoelastic material with

l � G1=G0 and a characteristic relaxation time, t (de Gennes, 1996; Hui et al., 1992).
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magnitude. At low velocities and high temperatures, it approaches a lower limit asymptotically; this is
usually identi®ed as the intrinsic toughness of the interface. The experimentally measured fracture
toughness, G, is found to be described well by an empirical relation of the form

G � G0

�
1� f�aTu, Tr �

� �1�

where G0 is the intrinsic fracture energy of the interface, aT is the WLF (Williams, Landel, Ferry) shift
function for a polymer (Ferry, 1980), and Tr is a reference temperature. In the peeling of polymer
adhesives from sti� substrates one often ®nds a transition from cohesive to adhesive failure
accompanied by a sudden decrease in peel energy (Gent and Petrich 1969; Derail et al., 1997). The
function f �aTv, Tr� in eqn (1) represents the irreversible viscous energy dissipated in the peel arm as a
function of reduced rate of peeling, aTv. Peel fracture energies exhibit time±temperature superposition
characteristic of viscoelastic processes. The values of G0 are estimated by performing the peel
experiments at low rates and high temperatures, conditions under which viscoelastic dissipation is
minimal. The values of G0 so estimated range from 10 to 50 J/m2. That these values are large compared
to surface energy due to breakage of primary bonds (12 J/m2) has been explained by a model which
assumes that all the stored elastic energy between cross-links is lost in the fracture process (Lake and
Thomas, 1967). The intrinsic fracture energy, G0, is usually interpreted as a rate-independent number
representative of bond strength. A rate-dependent intrinsic cohesive zone can equally well satisfy the
form eqn (1), as long as its parameters obey time±temperature superposition (Xu et al., 1992).

Several analyses of viscoelastic peel and related tests have been performed. The studies of Kendall
(1972), Aravas et al. (1989), and Loukis and Aravas (1991) assume the peel shape at steady state in the
form of a root angle as it joins the substrate. The fracture energy is computed from the evaluated peel
shape for a given root angle using beam theory. The total dissipation in the analysis is assumed to be
equal to the sum of the intrinsic strength of the interface, G0, and viscous dissipation in the peel arm.
Although this additive decoupling does not preclude a dependence of viscous dissipation on G0, it does
hide the generally accepted multiplicative coupling between intrinsic and macroscopic fracture energy for
viscoelastic fracture. A similar analysis for peeling of elastic±plastic materials has been performed by
Kinloch et al. (1994). Analyses of related tests that include a cohesive zone have been presented recently
by Xu et al. (1992), Knauss (1993), and Knauss and Losi (1993). There appear to be no computational
analyses of the peel test for viscoelastic materials in the literature that include a cohesive zone as part of
the model.

In this paper we present the development of a computational methodology within an implicit ®nite
element framework to model crack propagation in viscoelastic materials accounting for the cohesive
zone that represents the fracture process at the crack tip. Speci®cally, we seek to explore, using this
computational framework, the relationship between macroscopic and intrinsic fracture energy, and the
e�ect of cohesive zone parameters on these predictions. The numerical modeling of the cohesive zone is
based on the use of cohesive elements. The computational model is used to analyze a model peel test of
a standard linear viscoelastic solid. The e�ect on the predicted fracture toughness of the various
parameters characterizing the cohesive zone model is investigated. Finally we model the experimental
peel test of Gent (1996) on Butadiene rubbers using their measured viscoelastic properties and intrinsic
fracture toughness.

2. Computational model formulation

The computational model consists of the bulk material modeled as a continuum along with a cohesive
zone for the fracture process at the crack tip. The bulk material is modeled using standard
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displacement-based ®nite elements, and the cohesive zone is modeled using cohesive elements. The
cohesive element approach employed here is similar to that used by Needleman (1990), Tvergaard and
Hutchinson (1992), Xu and Needleman (1994), and Camacho and Ortiz (1996) for studying fracture in
elastic±plastic and brittle solids. Similar elements have been used to model fracture in concrete by Bocca
et al. (1991), Gerstle and Xie (1992), and Bazant and Planas (1998).

The principle of virtual work for the bulk material and cohesive zone is given as�
V

s:dd dV�
�
S

T � d ÇD
1

J
dSÿ

�
A

F � dv dA � 0 �2�

where: s is the Cauchy stress tensor; dd is the virtual rate of deformation tensor; T is the vector of
cohesive tractions; D is the vector of displacement jumps across the cohesive surfaces; F is the vector of
externally applied tractions; dv is the vector of the virtual velocity ®eld; V is the current volume of the
bulk material; S is the current internal surface area over which the cohesive forces are acting; A is the
current external surface area over which the external tractions are applied; J is the Jacobian of the
transformation between the current deformed and original undeformed areas of the cohesive surfaces.
The surface area over which the virtual work of the cohesive tractions is integrated corresponds to the
original undeformed area, S0, not the current area, S, as represented by the deformed cohesive element.
The latter would be customary in an updated Lagrangian ®nite element framework. By evaluating the
virtual work integral over the initial unstretched con®guration of the cohesive element, we ensure that
the work of separation associated with this unit area is independent of the in-plane stretch of the
element. This is appropriate for modeling fracture in solids for which it may be assumed that the
number of bonds broken are ®xed per unit undeformed area, S 0, of crack surface formed (Lake and
Thomas, 1967). For liquids, it would be more appropriate to de®ne fracture energy based on current
area.

An implicit ®nite element solution for the unknown displacement con®guration for a given set of
loads requires the evaluation of the ®rst variation of the virtual work equation. This results in the
tangent sti�ness matrix needed for Newton±Raphson iterations. The implementation of cohesive
elements then requires the evaluation of the ®rst variation for the second term of eqn (2). This virtual
work of the cohesive forces is given as

dWc �
�
s

ÿ
d ÇDnTn � d ÇD tTt

�1
J

dS �3�

where Tn and Tt are the normal and tangential tractions respectively, and d ÇDn and d ÇD t are the normal
and tangential jump velocities across the cohesive zone surface. Substituting the virtual jump velocities
in terms of the cohesive element nodal shape functions and the nodal virtual jump velocities, the
discretized virtual work in the current con®guration, d �W c, is obtained as

d �W c �
�
s

�
d ÇÅD

T

n NTTn � d ÇÅD
T

t NTTt

�
1

J
dS �4�

where the bar denotes cohesive element nodal values, the superscript T denotes a transpose operation,
and N is the vector of cohesive element nodal shape functions. The form of eqn (4) ensures that the
virtual work so integrated can be used with bulk ®nite elements that are formulated using an updated
Lagrangian formulation. The ®rst variation of the virtual work, dd �W c, is given as

dd �W c �
�
s

�
d ÇÅDT

n NT dTn � d ÇÅDT
t NT dTt

�
1

J
dS�

�
s

�
d ÇÅDT

n NTTn � d ÇÅDT
t NTTt

�
d

�
1

J

�
dS �5�

P. Rahulkumar et al. / International Journal of Solids and Structures 37 (2000) 1873±1897 1877



where dTn, dTt are the incremental normal and tangential tractions, respectively. In eqn (5) the second
term accounts for the stretching of the cohesive element. For small stretching of the cohesive element
this term is negligible and the ®rst variation of the virtual work can be approximated as

dd �W c1
�
s

�
d ÇÅDT

n NT dTn � d ÇÅDT
t NT dTt

�
1

J
dS �6�

which is the form we use. Incremental tractions are related to incremental jump velocities by the
cohesive material Jacobian, [C ], as�

dTn

dTt

�
� �C�

�
d ÇDn

d ÇD t

�
�7�

�C� �

26664
@Tn

@Dn

@Tn

@Dt

@Tt

@Dn

@Tt

@Dt

37775 �8�

Substituting the incremental tractions in terms of the incremental jump velocities from eqn (7) into eqn
(6), and writing the incremental jump velocities in terms of the incremental cohesive element nodal
velocities, the tangent sti�ness matrix takes the form

KT �
�
s

�A�T�C��A�1
J

dS �9�

where [A ] is the matrix of cohesive element nodal shape functions that relates the nodal velocities to the
velocities of the displacement jumps within the cohesive element. The sti�ness matrix implemented using
eqn (9) gives an approximate tangent for Newton±Raphson iterations. However, no approximation is
made in computing tractions, and hence equilibrium is ensured upon convergence.

The constitutive law for an isotropic viscoelastic bulk material for small strains and rotations is given
by the hereditary integral

s�t� � s0�t� �
�t

0

 
_G �t 0 �
G0

S0�tÿ t 0 � � I
_K �t 0 �
K0

p0�tÿ t 0 �
!

dt 0 �10�

where t is the current time; G0 and K0 are instantaneous small strain shear and bulk moduli respectively;
S0 and p0 are the deviatoric and hydrostatic components, respectively, of the instantaneous Cauchy
stress, s0; and I is the second order identity tensor. A superposed dot implies di�erentiation with respect
to time. A generalization of the above hereditary integral for the deformation state of a material point
in a peel test characterized by small strains and large rotations is given as

s�t� � s0�t� �
" �t

0

RT
t
�tÿ t 0 � �

 
_G �t 0 �
G0

S0�tÿ t 0 � � I
_K �t 0 �
K0

p0�tÿ t 0 �
!
� Rt�tÿ t 0 �dt 0

#
�11�

where Rt�tÿ t 0 � is the material point rotation tensor that rotates the con®guration at time t ' to the
con®guration at current time t. This generalization can be interpreted as rotating the stress at some
previous time (t ÿ t '), into the current con®guration of the material point at time, t, in order to satisfy
the principle of objectivity of stress. For a situation characterized by large strains and large rotations the
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deformation gradient, Ft�tÿ t 0 �, is used in place of Rt�tÿ t 0 �. For the deformation state of the material
in a peel test we have F 1 R (Ogden, 1984).

For computational convenience, the bulk relaxation modulus, K(t ), and shear relaxation modulus,
G(t ), are represented by a generalized Maxwell series as

K�t� � K1 �
XnK
i�1

Ki exp

�
ÿ t

tKi

�
G�t� � G1 �

XnG
i�1

Gi exp

�
ÿ t

tGi

�
�12�

where K1 and G1 are long term bulk and shear moduli, respectively. The material is assumed to have
di�erent relaxation times, tKi and tGi , for bulk and shear relaxation, respectively, and the corresponding
bulk and shear moduli are given as Ki and Gi. The number of generalized series terms nK and nG, for
bulk and shear behavior, respectively, need not be the same.

The phenomenological cohesive law of Xu and Needleman (1994) has been used to represent the
intrinsic fracture zone. It is rate-independent and relates the tractions acting across cohesive surfaces to
their respective displacement jumps using a potential function, f. It has been pointed out that the
detailed shape of the cohesive law is relatively unimportant (Knauss, 1973; Rice, 1978). The two
independent parameters that characterize the cohesive law are important: G0 and dcr, the energy of
separation per unit area and a characteristic opening displacement. The potential function for the Xu
and Needleman (1994) potential is given as

f�Dn, Dt � � fn � fn exp

�
ÿ Dn

dn

�(�
1ÿ r� Dn

dn

�
1ÿ q

rÿ 1
ÿ
�
q�

�
rÿ q

rÿ 1

�
Dn

dn

�
exp

 
ÿ D2

t

d2t

!)
�13�

where dn and dt are the critical normal and tangential openings, respectively, of the cohesive zone.
Normal and tangential forces in the cohesive zone decrease in magnitude once the corresponding normal
and tangential relative displacements exceed these critical values. fn and ft are the works or fracture
energies of normal and tangential separation, and the parameters q and r are given as

q � ft

fn

, r � D�n
dn

�14�

where D�n is the value of Dn after complete shear separation for Tn=0. Tractions are derived from the
potential function, f, as

Tn � ÿ @f
@Dn

, Tt � ÿ @f
@Dt

�15�

This potential-based model allows for di�erent normal and tangential works of separation. The ability
to derive tractions using eqn (15) allows for a continuous speci®cation of tractions along the cohesive
zone. The material Jacobian of the cohesive elements as given by eqn (8), which is required in the
formulation of the tangent sti�ness matrix for these elements, can be derived by di�erentiating the
tractions given by eqn (15) with respect to the normal and tangential openings. The material Jacobian
so obtained is a smooth and continuous function of the openings, a highly desirable feature for
Newton±Raphson iterations in an implicit ®nite element framework.

The normal fracture energy, fn, and the tangential fracture energy, ft, can be written in terms of the
cohesive surface normal strength, smax, and tangential strength, tmax, as

fn � esmaxdn, ft �
����
e

2

r
tmaxdt �16�

P. Rahulkumar et al. / International Journal of Solids and Structures 37 (2000) 1873±1897 1879



where e=exp(1). In all analyses presented here we assume that the cohesive zone has identical normal
and tangential fracture energies, and identical normal and tangential critical opening displacements.
Thus: fn � ft � G0; dn � dt � dcr; q � 1. The value of r in eqn (14), is taken as zero. For these
parameters the potential simpli®es to

f�Dn, Dt � � G0

"
1ÿ

�
1� Dn

dcr

�
exp

�
ÿ Dn

dcr

�
exp

 
ÿ D2

t

d2cr

!#
�17�

The above computational model formulation for cohesive elements has been implemented as a family
of 2D and 3D cohesive elements for use with implicit static and implicit dynamic procedures in the
general-purpose ®nite element code ABAQUS

1

(1997) using the user de®ned routines. The cohesive zone
model implementation is independent of the kinematics of the cohesive elements. Hence any other
cohesive zone model implemented in this library is available to all of the 2D and 3D cohesive elements
for use with static and dynamic procedures. This element library can be used to study fracture initiation
and propagation along with various bulk ®nite elements using di�erent material models.

3. Veri®cation of the computational framework

3.1. Elastic double cantilever problem

The problem of a crack propagating along an elastic double cantilever beam (DCB) as shown in Fig.
2 is used to verify the cohesive element implementation. A two-dimensional plane strain large
deformation analysis is performed. Due to symmetry about the x-axis, only one half of the double
cantilever is modeled. A schematic of the ®nite element mesh used in the DCB analysis is shown in Fig.
3. The spring and beam element shown in the Figure are not used in the DCB analysis and are used in
the peel analysis described later. The cantilever beam is modeled with four-node bulk plane-strain
elements with incompatible mode shape functions that help alleviate mesh locking in bending. The crack
grows and propagates along the x-axis to the right, and cohesive elements are placed along the x-axis to
model this crack growth. Linear, four-node, cohesive elements are used in the analysis. The cohesive
elements have a top and a bottom face with two nodes on each face. The top faces of the cohesive
elements are attached to the adjacent bulk plane strain elements. In the undeformed con®guration the
top and bottom faces of the cohesive elements, as well as the corresponding nodes, are coincident. As
the load is applied, the bulk elements deform and thereby pull the top face of the cohesive elements
away from the bottom face.

Symmetry boundary conditions are speci®ed by constraining displacement in the y-direction and
tractions along x-direction to be zero for all the nodes on the bottom face of the cohesive elements
along the x-axis. The nodes on the top face of the cohesive elements are constrained to have the same
displacement in the x-direction as the corresponding nodes on the bottom face. Nodes on the face at

Fig. 2. Crack in an elastic double cantilever beam (DCB).
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x=L are constrained to have displacement ux � 0. Loading consists of an applied displacement, d, to
the node located at x= 0, y = 0. A uniform mesh with each cohesive element of size Dh, Fig. 3, has
been used in the analysis. The material is characterized by the parameters: Young's modulus, E = 100
GPa; Poisson ratio, v = 0.25. Cohesive zone properties are: fracture energy G0 � fn � ft � 1:0� 106 J/
m2; critical opening displacements, dcr � dn � dt � 1:0� 10ÿ2 m. The length (L ) and thickness (h ), Fig.
3, of the beam modeled in this analysis are 100.0 m, and 1.0 m, respectively. A normalized cohesive
element size, Dh=dcr � 12:5, has been used. The crack tip is de®ned as the location along the x-axis
where the normal opening in the cohesive elements equals the critical opening displacement, dcr. Cracks
in the DCB specimen grow stably under the above boundary and loading conditions, which allows a
quasi-static analysis. A plot of the calculated crack length, c, normalized with the peel thickness, h,
versus the normalized crack opening displacement, d=dcr, along with the analytical relation for the crack
length and crack opening displacement (Lawn, 1993) is shown in Fig. 4. The cohesive element results are
in good agreement with analytical predictions based on linear elastic fracture mechanics (LEFM) theory.
The DCB ®gure shown in Fig. 2 is the actual deformed shape plot of the model analyzed.

Fig. 4. Comparison between analytical and computational results for crack propagation in an elastic DCB specimen.

Fig. 3. Schematic drawing of the ®nite element mesh for DCB, and elastic and viscoelastic peel analyses.
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4. Peel analysis

Consider a peel test as shown in Fig. 5. The fracture toughness of the interface, G0, energy dissipation
in the peel arm, and external work are related by an energy balance for the entire system (Kinloch,
1987). For an incremental crack advance, dx, the external work done by the loading, (1ÿcos j)F dx,
equals the sum of the change in elastic energy stored in the peel arms, dW e, the work expended as
dissipation in the peel arms, dW v, and the energy spent in interface separation, G0w dx, i.e.,

�1ÿ cos j�F dx � dW e � dW v � G0w dx �18�
The term dW e is commonly neglected since during experiments steady state peeling is obtained with the
aid of a sti� backing material attached to the polymer. Written in this form, eqn (18) suggests that the
terms dW v and G0 are uncoupled, and have been treated as such in several analyses discussed in the
Introduction.

If a steady state exists, there is no change in the shape of the peel arms in an incremental sense. When
there is no change in the elastic strain energy, dW e, the work done by the external loads on the system
is the experimentally measured fracture energy, G, i.e.,

G � 1

w
�1ÿ cos j�F � G0 � 1

w dx
dW v �19�

This is the sum of the fracture toughness of the interface and the energy dissipated in the peel arm.

Fig. 5. Geometry of a peel test.
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4.1. Dimensional analysis

Consider a peel test shown schematically in Fig. 5, where the material in the peel arms is
characterized as a linear viscoelastic solid. Assume that the bulk modulus is a ®xed number; all the
relaxation then occurs in shear deformation. The cohesive zone is characterized by two rate-independent
parameters, G0, and dcr. The geometrical parameters that de®ne the peel geometry are the thickness, h,
and width of the peel, w. Loading in the problem is speci®ed as the peeling force per unit width of the
peel, F/w, and the peel velocity, V.

We present a dimensional analysis that helps to organize these variables into dimensionless groups.
Similar dimensional analyses have been considered earlier in the literature by Tvergaard and Hutchinson
(1992) for fracture in elastic±plastic solids, and by Carpinteri (1991) in the study of size scale transition
from ductile to brittle failure. Consider ®rst the case where the material properties may be represented
by the standard linear solid. The complete list of parameters that characterize the peeling process are:

G1, G0, t0 standard linear solid properties

G0, dcr fracture process

h, V, F=w, j geometry and loading �20�
where t0 is the relaxation time of the standard linear solid. A dimensional analysis reveals that the force
per unit width in a peel test, �1ÿ cos j�F=w � G, is related to a combination of dimensionless
parameters in a functional form, F, given as

G � �1ÿ cos j�F
w
� G0F

�
G1
G0

,
G0h

G0
,
t0V
h

,
dcr

h

�
�21�

G scales with intrinsic toughness G0. However, it also depends on other parameters. The dimensionless
parameter, l � G1=G0, characterizes the viscoelastic rheology of the material in the peel arms and the
dimensionless parameter, G0h=G0, couples the fracture energy of the interface with the thickness of the
peel arm and short time modulus. The parameter, V � � t0V=h, can be interpreted as the ratio of the
relaxation time of the polymer to that of the time required to propagate the crack tip along the interface
by a distance equal to the peel thickness.

It is well known that the bulk material properties of many polymers satisfy a rate-temperature
equivalence principle based on a shift parameter, aT, that is de®ned by the Williams, Landel, Ferry
(WLF) equation (Ferry, 1980) as

log10�aT � �
ÿC1

ÿ
Tÿ Tg

�
C2 �

ÿ
Tÿ Tg

� �22�

where Tg is the glass-transition temperature of the material. For many `ideal' rubbers constants C1 and
C2 take the values 17.4 and 51.6, respectively. The time constant, t0�T �, for any temperature T is then
given by the relation t0�T � � aT�T �t0�Tg�. Thus the non-dimensional form, t0�T �V=h, at a temperature,
T, can be written as t0�Tg��aT�T �V �=h. Therefore, the functional form, F, for the growth in the fracture
energy, G, is a function of the reduced peel velocity, aT�T �V. Consequently, the dependence of peel
energy on rate and temperature exhibits rate-temperature equivalence similar to that demonstrated by
the bulk properties of the polymer sheets. The parameter, (dcr=h), normalizes the critical opening
displacement of the cohesive zone with the other length scale present in the problem at steady state,
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namely the thickness of the peel arm. The above functional form for the fracture energy can be split
into two parts, G0 and G0�Fÿ 1�, resulting in a form consistent with the empirical eqn (1). The
dimensional analysis is readily generalized to the case when the material is represented by a generalized
Maxwell series eqn (12) as

G � G0F

�
G1
G0

,
Gih

G0
,
K1
K0

,
Kjh

G0
,
tGi V
h

,
tki V
h

,
dcr

h

�
�23�

where i � 1, . . . , nG, j � 1 . . . nK,

G0 � G1 �
XnG
i�1

Gi, and, K0 � K1 �
Xnk
i�1

Ki:

4.2. Elastic peel analysis

A large deformation elastic T-peel test problem (j � 908) with material properties that are
characteristic of a fully relaxed polymer is used to study elastic peeling. The elastic T-peel test problem
is shown schematically in Fig. 5. It serves as an important limiting case of the viscoelastic analysis. It
also allows one to verify that the model computes a steady state value of peel force which, for an elastic
material, depends only on the intrinsic cohesive energy G0, and not on other cohesive zone parameters.

A schematic of the ®nite element mesh for the computational model of an elastic T-peel test is shown
in Fig. 3. Invoking symmetry about the x±z plane, we model only the upper half. Geometric and
materials parameters are: length L= 0.1 m, thickness h = 0.001 m, bulk modulus, K = 5 GPa, shear
modulus, G = 1 MPa, and cohesive zone fracture energy G0 � fn � ft � 10:0 J/m2. The problem is
analyzed for two di�erent values of the critical opening displacements, dcr � dn � dt � 50 and 500 mm.
The bulk is discretized by four-node hybrid plane strain elements with incompatible mode shape
functions. These elements are based on a mixed displacement-pressure formulation. Four-node cohesive
elements placed along the axis of symmetry are used to model the interface. The normalized size of the
cohesive elements, Dh=dcr, for the two di�erent dcr are 2.5 and 0.25, respectively. Displacement
constraints include coupling of the cohesive element nodes to account for symmetry are similar to those
used for the elastic DCB problem. It is customary in experimental peel tests to provide a quasi-rigid
backing on the peel material to avoid large axial stretching and to attain a steady state. Spring elements
placed on the peel surface at y=h, as shown in Fig. 3, are used to model such a backing. The spring
elements are active only in tension and do not o�er any resistance in compression. The force±axial
strain relationship in tension for the spring elements is given by the nonlinear relation

P � a
�
e
b

�n

�24�

where n = 2, and b=0.001 is a characteristic strain. The coe�cient a is chosen such that the axial
sti�ness of the springs, given by dP/de, is equal to ten times the shear modulus of the elastic peel at a
strain level of e � b. This form of relation for the force±axial strains in the springs provides axial
rigidity that increases linearly with the straining of springs.

The elastic beam element is used as a loading mechanism to obtain a 908 peel angle. Loading is
applied in two steps. The ®rst step consists of a prescribed 908 rotation along the negative z-axis to the
two end nodes of the beam element along with a speci®ed peel rate in the form a nodal velocity, V �
1:0� 10ÿ9 m/s, to the node located at x= 0, y=h. In the second step, the angle is held constant while
the nodal velocity continues to act until a steady state is reached.
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A plot of the deformed shape at steady state is shown in Fig. 5. The bottom peel is obtained by
re¯ecting the modeled top half. The evolution of normalized fracture energy, G=G0, with crack
advancement in the elastic peeling process is shown in Fig. 6. At steady state the work done on the
system reaches a steady value which, as measured by the peel force, is achieved when the crack advances
by about twenty peel thicknesses (h ) along the interface. As expected, the steady state value for G is
independent of the magnitude of dcr used in the analysis. An analysis without the spring elements leads
to results that are numerically indistinguishable from these results.

4.3. Viscoelastic peel analysis

4.3.1. Problem formulation
Consider again Fig. 5 where the peeling material is now viscoelastic. For the results presented in this

section, it is taken to be a standard linear viscoelastic solid. The material is assumed to have no
relaxation in the bulk behavior; all the relaxation occurs in shear deformation. The bulk and shear
moduli as a function of time are given as

K�t� � K

G�t� � G1 � �G0 ÿ G1� exp

�
ÿ t

t0

�
�25�

This is identical to a one-term generalized Maxwell series representation for the shear modulus with a
single relaxation time, t0, and a constant bulk modulus. The numerical values employed in this study
are K= 5 GPa, G0 � 10 MPa, G1 � 1 MPa, and t0 � 1:0 s. The ratio, G1=G0 � 0:1, is chosen to
obtain a steady state by the time the crack tip propagates by 40±60 times the peel thickness. For smaller
ratios, a longer peel length is required to reach steady state.

A set of dimensionless parameters for convenience in understanding and interpretation of the analysis
results are de®ned as

Fig. 6. Evolution of fracture energy to steady state in elastic peeling.
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l � G1
G0

V � � t0V
h

, Vh � h

t0

G� � G
G0

s�n �
Tn

scr

D� � Dh

dcr

�26�

Vh is a characteristic peel velocity and V � is the ratio of the peel velocity to the characteristic velocity
Vh.

4.3.2. Predictions of fracture toughness
We present ®rst two cases of the peel problem with the same dimensionless parameters in the function

F in eqn (21). The parameters used for these cases are: Case 1: G0 � 10 J/m2, h = 1.0 mm, Dh=dcr �
2:5,dcr � 50 mm; and Case 2: G0 � 5 J/m2, h = 0.5 mm, Dh=dcr � 2:5, dcr � 25 mm. The peel analysis is
performed for varying normalized peel velocities, V �. A plot of the deformed shapes of the peel at
steady state for three representative velocities (low, medium and high) are shown in Fig. 7(a, b, c),
respectively. In the limiting cases of low and high velocities the material behaves elastically everywhere
and the curvature decreases monotonically to zero from a maximum value at the crack tip. At low
velocities, the material is completely relaxed to the lower modulus G1 causing the peel arm to have
larger curvature, overall, while at high velocities the material is sti� as it is unrelaxed at G0 causing the
peel arm to deform with a smaller curvature. At medium velocities, with increasing distance from the
crack tip, the curvature reduces, changes sign, and ultimately approaches a limiting value of zero. This
results from the viscoelastic nature of the material that causes di�erent parts of the peel arm to exhibit
di�erent incremental sti�ness. Similar shapes for peel arms in the peeling of viscoelastic sheets were
obtained by Kendall (1972).

The variations in the normalized fracture energy, G�, with normalized velocity, V �, for the two cases
considered are shown in Fig. 8. The two plots are identical within computational accuracy, verifying the
dimensional analysis presented in Section 4.1. This also further veri®es the assertion that the fracture
energy scales with the intrinsic fracture toughness at a ®xed velocity. Thus, the viscous dissipation in the
peel arm is not independent of the intrinsic fracture toughness of the interface, consistent with eqn (1).
Consider now the three di�erent regimes drawn in Fig. 8 corresponding to the low, medium and high
normalized velocities V �. In the low and high velocity regimes fracture energy equals the intrinsic
fracture energy. In the medium velocity regime the fracture energy and viscous dissipation in the peel
arm are sensitive to the normalized peel velocity, V �, and attain a maximum. An upper bound on the
fracture energy can be obtained by considering the case of a crack propagating in an in®nite medium
characterized by the linear solid material properties. It is known for this case that the maximum possible
fracture energy equals G0=l (Hui et al., 1992). For the case of a peel with ®nite thickness there is a limit
on the size of the viscous dissipation zone (Fig. 1) and hence it is expected the maximum normalized
fracture energy, G�, can be smaller than 1=l. For the material properties considered here 1=l evaluates
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Fig. 8. Variation of fracture energy, G�, with the normalized velocity, V �.

Fig. 7. (a, b, c). Viscoelastic peel deformed shapes at low, medium, and high peel velocities.

P. Rahulkumar et al. / International Journal of Solids and Structures 37 (2000) 1873±1897 1887



to 10 and from Fig. 8 it is observed that numerical modeling predicts a factor of about 3. The variation
of the cohesive zone size at steady state is shown in Fig. 9 for varying normalized peel velocities. The
cohesive zone size attains limiting values in the low and high velocity regimes. The increase in cohesive
zone size with velocity is consistent with the increased sti�ness of the material. A soft peel arm in the
low velocity regime, as seen from Fig. 7(a), results in a smaller cohesive zone whereas a sti�er unrelaxed
peel arm in the high velocity regime, as seen from Fig. 7(c), results in a larger cohesive zone. However,
in the transition between the two limits there is an overshoot; the largest cohesive zone is at an
intermediate velocity.

Qualitatively, the shape shown in Fig. 7(b) and the fact that the largest cohesive zone size occurs at
an intermediate velocity may be understood as follows. Imagine a material with sti�ness, G0, everywhere
which has a characteristic peel shape. Imagine now that a portion of the peel arm, say from the point of
load application to some distance behind the crack tip, is relaxed to the rubbery modulus G1. Because
the sti� material just behind the crack tip is now attached to the point of load application by a soft peel
arm, the shape will now change to a lower curvature near the crack tip with an associated increase in
cohesive zone length.

A measure of the transition region where viscous dissipation is localized can be obtained by plotting a
parameter r along the peel arm. The parameter r is de®ned as

r � eÿ e0
e1 ÿ e0

�27�

where e � �������������
2=3e:e
p

, and e is the total deviatoric strain. This parameter was proposed and used by Hui et
al. (1992) to depict the viscous dissipation zone near a crack tip under small-scale yielding. The
quantities, e0 and e1, are obtained by dividing the actual Mises stress at the material point by three
times the unrelaxed shear modulus, G0, and the fully relaxed shear modulus, G1, respectively. In the

Fig. 9. Variation of cohesive zone size with peel velocity.
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completely relaxed and completely unrelaxed states the parameter, r, would be close to 1.0 and 0.0,
respectively. A value of the parameter, r, away from either 1.0 or 0.0 indicates departure from linear
elasticity, i.e., it indicates viscous deformation. The distribution of the parameter r evaluated along the
tensile ®ber of the peel arm is shown in Fig. 10 for a number of peel velocities. These plots correspond
to G0 � 10 J/m2, dcr � 50 mm, and h = 1 mm. The origin of the x-axis of the plot is located at the crack
tip, x c. For V � � 1 the polymer sheets are completely relaxed everywhere to their long term modulus,
G1. There is little dissipation and we expect the parameter r to be close to 1.0 as is evident from Fig.
10. For V � � 1, the crack is travelling in an unrelaxed elastic material with shear modulus, G0. The
parameter, r, as expected, is close to zero everywhere. For intermediate velocities, V �1O�1�, or the peel
velocity, V1Vh, the material will relax from an initially sti� state as it enters the cohesive zone to a soft
state as behind the crack tip. Plots of the variation in parameter, r, along the peel arm for V �=0.1, 1.0
(peak dissipation), and 10.0 are also shown in Fig. 10. At the velocity corresponding to peak dissipation,
there is a distinct peak in r some distance behind the crack tip. The region of viscous dissipation has
detached from the crack tip and moves further behind with increasing velocity.

It is useful to compare the results obtained above with those obtained by Xu et al. (1992), who study
the problem of a crack propagating along the interface of two bonded viscoelastic polymer sheets
modeled as a standard linear viscoelastic solid in a DCB geometry. Using a rate-independent Dugadle-
like constant stress cohesive zone model they derive results for macroscopic fracture energy of the form

G � G0

�
1� f�u�, c�� �28�

where u� � t0V=al, c � �E0Idcr�=�2a4sc�. The parameter, a, is the horizontal distance between the point
of application of load and the crack tip; E0 is the short term Young's modulus; I is the moment of
inertia; and scr is the constant failure stress of their cohesive zone model. We evaluate eqn (28) using

Fig. 10. Plots of parameter, r, representing regions of viscous dissipation along the peel arm for various peel velocities.
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values for parameters, a and c, from the present peel ®nite element analysis, using dcr as de®ned here,
and sc � smax of the Xu and Needleman cohesive zone model eqn (17). The resulting values are
compared against the fracture energies as obtained from the present computational model in Fig. 11.
Peel analysis computes a peak fracture energy that is considerably higher than in an equivalent DCB
specimen. This itself is not remarkable considering the di�erence in geometry. We do ®nd that the
velocity at which peak dissipation occurs as predicted by the present computational framework and the
DCB model are approximately the same. This suggests that the location of the viscous dissipation zone
with respect to the ®nite specimen geometry is similar in the two cases.

4.3.3. E�ect of cohesive zone model parameters
Observe from eqn (21) that F may depend on the cohesive zone parameters, dcr and G0, apart from

the viscoelastic properties of the polymer sheets, l, and the sheet thickness, h. As mentioned earlier, for
linear elastic solids, the parameter, G0, alone is su�cient to characterize crack propagation; the critical
energy release rate and cohesive zone approaches coincide in the limit dcr4 0. For models of the elastic
peel test, even the condition dcr4 0, may be relaxed. As long as steady state is achieved, peel energy
equals G0. As pointed out by Rice (1978), for cracks in a viscoelastic material, the cohesive zone
approach to crack propagation di�ers from one based on critical energy release rate. The implication for
modeling with cohesive elements is that at least two parameters, G0 and dcr, must be speci®ed, even if it
is accepted that the detailed shape of the cohesive law is unimportant. Together, through eqn (16), they
specify a charteristic maximum stress in the cohesive zone.

Simulations have been conducted for a range of peeling velocities at a speci®ed intrinsic fracture
energy, G0 � 10 J/m2, peel thickness, h = 1.0 mm, and for three values of dcr, namely, 50, 250, and 1250
mm. Results for normalized fracture energy, G�, as a function of normalized peeling velocity, V �, are
shown in Fig. 12. Again, fracture energies are independent of dcr in the two limits, V � � 1 and V � � 1,
and are equal to the intrinsic fracture energy, G0. The parameter, dcr, has considerable in¯uence on the
predicted peak in the fracture energy for the same viscoelastic material properties of the polymer sheets.
With decreasing dcr the predicted fracture toughness begins to grow and peaks at lower velocities.
Predicted fracture energies fall rapidly to the right of the peak values and this part of the curves is less

Fig. 11. Comparison of the fracture energy as predicted by the cohesive element computational model (peel) and the Xu et al.

(1992) model (DCB).
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sensitive to changes in dcr. Thus, the low velocity and medium velocity zones shift to the left on the
normalized velocity scale while the high velocity zone is relatively insensitive to dcr.

The results of Fig. 10 and 12 may be interpreted in terms of the de Gennes (1996, 1997) and Hui et
al. (1992) picture of viscoelastic fracture (Fig. 1):

1. The material is elastic everywhere with relaxed rubbery modulus, ut=l< L (cohesive zone size). Peel
energy is insensitive to dcr.

2. The viscous region develops, ut=l > L, but the glassy region has not developed, ut< L. Peel force is
sensitive to dcr.

3. The material near the cohesive zone is elastic with the glassy modulus, ut > L. Peel force is relatively
insensitive to dcr.

4. The material is elastic everywhere with the glassy modulus, ut > a (peel length). Peel force is
insensitive to dcr.

Decreasing dcr implies decreasing L, although the relationship between the two is not simple. With
decreasing dcr the transition from region I to II occurs at decreasing velocities, consistent with the
condition for transition between the regions ut=l > L. In region III, ut > L; the region of energy
dissipation detaches from the cohesive zone which is surrounded by an elastic region with modulus G0.
Consequently, the peel energy again depends only on G0, not on dcr. Normalized tractions along the
fracture surface are shown in Fig. 13 as a function of distance from the crack tip at peak dissipation for
three di�erent values of dcr. Maximum cohesive zone traction scales inversely with dcr. The cohesive
zone size decreases with decreasing dcr. However, because of accompanying changes in the peel shape
the reduction in cohesive zone size is not proportional to dcr.

In the limit, dcr4 0, the cohesive zone and energy release rate approaches to viscoelastic fracture are
again equivalent (Rice, 1978). In this limit the fracture process is controlled by only one cohesive zone
parameter, G0. In the present analysis, for G0=10 J/m2 and dcr=1250 mm we obtain smax=0.003 MPa,
L= 4800 mm, G=17.0 J/m2; and for G0=10 J/m2 and dcr=5 mm we obtain smax=0.7 MPa, L = 300
mm, G=45.0 J/m2. Whether a limit in which only G0 needs to be speci®ed is achievable with physically
acceptable values of dcr can be examined by studying the dependence of cohesive zone size, L, on the
dimensionless number `c', eqn (28). Fig. 14 plots cohesive zone size as a function of this number. It

Fig. 12. E�ect of critical opening displacement on fracture energy.
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includes results from the present analysis and those of Xu et al. (1992). For a given set of material
properties and thickness of the polymer sheets, and intrinsic fracture energy G0, the parameter c is
proportional to d2cr=a

4. For small enough values of dcr we ®nd a limit in which cohesive zone size is
independent of dcr. However, for the geometry analyzed here, this is achieved only when dcr<1 nm. For
G0=50 J/m2, this would result in maximum cohesive zone tractions of about 18 GPa, much larger than
the glassy modulus. We conclude, therefore, that a meaningful use of cohesive zone models for modeling
fracture in viscoelastic materials requires the knowledge of one additional parameter, namely either dcr

or smax, apart from the intrinsic energy of the interface, G0.

Fig. 14. Variation of the cohesive zone size with critical opening displacement.

Fig. 13. Variation of tractions along the length of the peel arm at steady state for velocities resulting in peak dissipation.
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5. Peeling of polybutadiene elastomer sheets

Consider now the well-known results on peeling of polybutadiene elastomers (Chang, 1980; Gent,
1996). The peel energy is considered qualitatively to be a combination of a rate-independent intrinsic
work of fracture and viscoelastic losses in the bulk. Observed increases in peel energy with peel velocity
are attributed to bulk viscoelastic losses. Here we employ the model developed to test this hypothesis
quantitatively.

For a controlled level on interfacial cross-linking, the threshold strength of self adhesion, the intrinsic
fracture toughness of the interface, G0, was determined by Chang (1980) at high test temperatures and
low rates of peeling, conditions under which viscoelastic dissipation e�ects are minimized. Peel energy
for a set of higher rates of peeling at various test temperatures above the glass transition temperature of
the elastomer were also measured. The peel rates at these various test temperatures were converted to a
reduced peel rate scale which was obtained by multiplying the actual peel rates by the corresponding
WLF shift factor, aT (Ferry, 1980), calculated for the di�erence in the test temperature and glass
transition temperature of the elastomer. The fracture energies when plotted as a function of these
reduced peel rates fell on a single curve. Detailed mechanical characterization of the elastomer in the
form of the tensile dynamics properties was also given in the reference, Chang (1980).

Plots of the storage and loss moduli, E ' and E0, are shown in Fig. 15 as a function of the reduced
frequency, oaT, Chang (1980). These were transformed into the transient Young's modulus through the
use of equations relating the dynamic components to the transient modulus (Ferry, 1980). The resulting
transient Young's modulus was converted to transient shear modulus by using the relation,
G�t� � E�t�=�2�1� u��. A value of 0.5 was used for Poisson's ratio, u, in this relation. An eight-term
Generalized Maxwell series ®t, as in eqn (12), was obtained for the transient shear modulus data. The
normalized generalized Maxwell series coe�cients, gi � Gi=G0, and the corresponding relaxation times
from this ®t are listed in Table 1. A plot of the experimentally obtained transient shear modulus and the
Generalized Maxwell series approximation is shown in Fig. 16. The glassy modulus for the elastomer,
G0, was not provided; it was assumed to be 1.0 GPa. As will be evident presently, the main conclusions
here are not sensitive to the quality of the ®t to viscoelastic measurements in the glassy region as
through most of the time and temperature regime being analyzed the material is close to being in the
rubbery state. It is assumed that there was no relaxation in the volumetric deformation of the elastomer,
and the bulk modulus, K, was chosen as 2.0 GPa.

Fig. 15. Storage and loss modulus for a butadiene elastomer (Chang, 1980).
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The specimen for the T-peel test in the experimental investigation had the following dimensions: peel
thickness, h = 0.75 mm, length of the peel, L= 80 mm. The experimental investigation used a cotton
cloth attached to the top of the specimen to minimize large extensions. As described in Section 4.3.1,
spring elements with the force±elongation relationship in tension only, as given by eqn (24), were used
to model the cotton cloth. The work of intrinsic fracture energy, G0, for the cohesive elements was
assumed to be equal to the threshold strength of self adhesion of the elastomer measured at high
temperature and low peel velocity. One such threshold work of self-adhesion for the BR elastomer was
measured to be 22.5 J/m2. The critical opening displacement, dcr, for the cohesive elements is taken as
50 mm.

A plot showing the experimentally measured growth in peel energy with the reduced peel rate is
shown in Fig. 17. The numerical simulations were carried out for a range of peeling rates from 10ÿ13 to
10ÿ4 m/s. It is observed that the numerical results using a rate-independent cohesive zone model predict
onset of viscous dissipation only above 10ÿ9 m/s. Experimental measurements reveal that viscous
dissipation begins at the peel velocities on the order of 10ÿ19 m/s: an immense discrepancy of about 10
orders of magnitude. The experimentally observed growth in fracture energies at velocities as low as
10ÿ19 m/s needs to be commented upon. Attention is drawn to the comments of Gent (1996) on this

Fig. 16. Dynamic shear modulus for butadiene elastomer and a generalized Maxwell series ®t.

Table 1

Generalized Maxwell series coe�cients and relaxation times for the butadiene

elastomer at its glass-transition temperature, ÿ908C

Term no., i Normalized shear modulus Time constant tGI
Gi � Gi=G0 (s)

1 0.88392 3.56484E-3

2 3.41887E-2 2.85973E-2

3 2.51032E-2 0.26090

4 2.82918E-2 1.5327

5 1.77887E-2 9.6884

6 7.30381E-3 84.922

7 2.14218E-3 1467.9

8 4.90413E-4 1.62799E+5

The table is based on data of Chang (1980).
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point. Based on the largest relaxation time in the Maxwell series ®t, t � 1:5� 105 s, at these rates
ut110ÿ14 m and ut=l110ÿ11 m. In other words, the glassy and viscous zones of Fig. 1 have not
appeared and the rubbery zone extends throughout the material. These rates are too low for appreciable
viscous dissipation to develop in the peel arm. Based on the discussion in the previous section, detailed
predictions will depend on the actual choice of dcr. However di�erences due to changes in dcr are too
small to account for the large discrepancy between theory and experiment.

We suggest, instead, that the observed growth in the fracture energy at such small velocities be
modeled by rate-independent dissipation in the intrinsic fracture zone, which would manifest in the
model as a rate-dependent cohesive zone model. As mentioned in the Introduction, several authors have
developed and used rate-dependent models in other contexts. However, this ®nding and suggestion goes
against the usual interpretation of viscoelastic peeling data (Gent, 1996; de Gennes, 1996) that the total
dissipation consists of a rate-independent work of separating the cohesive zone coupled multiplicatively
to viscoelastic dissipation in the bulk. Whether these data can be modeled quantitatively with an
appropriate rate-dependent cohesive law remains to be established and is the focus of ongoing work.

6. Conclusions

A computational framework for modeling fracture propagation in viscoelastic materials has been
developed. The development accounts for geometric nonlinearities and allows for the formation of
macroscopic crack surfaces through the use of a cohesive zone model implemented using a cohesive
surface ®nite element. The developments are used to study the growth in viscoelastic losses and fracture
energy in the peeling of a linear viscoelastic material. A dimensional analysis of the peel test problem
shows that peel energy is proportional to G0. It also depends on other geometrical and material
parameters. Computed results verify the dimensional analysis and the functional form for the
relationship between peel energy and peel velocity. This conclusion is in contrast to several earlier peel
analyses where it was assumed that viscous dissipation in the peel is independent of the intrinsic fracture
energy of the interface.

Analysis of peeling of a material represented by the standard linear solid shows that viscous
dissipation is negligible at peel rates that are small and large compared to a characteristic peel velocity,
Vh, which depends on the specimen geometry and relaxation time. In these limits, peel energy equals the
intrinsic interfacial energy. Between the two limits, with increasing peel velocity, peel energy increases,

Fig. 17. Experimental fracture energy and cohesive zone model predictions.
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attains a peak value, and decreases to the intrinsic interfacial toughness. Various regimes in peeling
velocity have been interpreted in terms of de Gennes (1996, 1997) picture of di�erent zones near a crack
propagating in a viscoelastic material. We ®nd that to model accurately the regime of velocities below
peak dissipation it is necessary to specify at least two cohesive zone parameters, e.g., dcr and G0. In this
regime the viscous dissipation region engulfs the cohesive zone. In the regime of velocities above peak
dissipation the viscous dissipation region detaches from the cohesive zone. The cohesive zone is
surrounded by an elastic region and can now be described by a single parameter, e.g., G0.

The computational model, when used to model experimental peel tests on Butadiene elastomers,
reveals that the predicted increase in peel energy occurs at much larger peel velocities compared to
experiment. Analysis of velocities at which experiments show viscous dissipation results in a viscous
dissipation zone on the order of 10ÿ11m. This has also been pointed out by Gent (1996) who suggests
local crack branching as a source of energy dissipation. Within the context of a continuum model it is
suggested that these experiments be analyzed using a rate-dependent cohesive zone model. Such
suggestions have also been made in literature earlier for modeling fracture in concrete by Carpinteri et
al. (1997).
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